Junction Tree Variational Autoencoder for Molecular Graph Generation
نویسندگان
چکیده
We seek to automate the design of molecules based on specific chemical properties. In computational terms, this task involves continuous embedding and generation of molecular graphs. Our primary contribution is the direct realization of molecular graphs, a task previously approached by generating linear SMILES strings instead of graphs. Our junction tree variational autoencoder generates molecular graphs in two phases, by first generating a tree-structured scaffold over chemical substructures, and then combining them into a molecule with a graph message passing network. This approach allows us to incrementally expand molecules while maintaining chemical validity at every step. We evaluate our model on multiple tasks ranging from molecular generation to optimization. Across these tasks, our model outperforms previous state-of-the-art baselines by a significant margin.
منابع مشابه
Towards Variational Generation of Small Graphs
In this paper we propose a generative model for graphs formulated as a variational autoencoder. We sidestep hurdles associated with linearization of graphs by having the decoder output a probabilistic fully-connected graph of a predefined maximum size directly at once. We evaluate on the challenging task of molecule generation.
متن کاملGraphvae: towards Generation of Small Graphs Using Variational Autoencoders
Deep learning on graphs has become a popular research topic with many applications. However, past work has concentrated on learning graph embedding tasks only, which is in contrast with advances in generative models for images and text. Is it possible to transfer this progress to the domain of graphs? We propose to sidestep hurdles associated with linearization of such discrete structures by ha...
متن کاملGraphvae: towards Generation of Small Graphs Using Variational Autoencoders
Deep learning on graphs has become a popular research topic with many applications. However, past work has concentrated on learning graph embedding tasks only, which is in contrast with advances in generative models for images and text. Is it possible to transfer this progress to the domain of graphs? We propose to sidestep hurdles associated with non-differentiability of such discrete structur...
متن کاملGraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders
Deep learning on graphs has become a popular research topic with many applications. However, past work has concentrated on learning graph embedding tasks, which is in contrast with advances in generative models for images and text. Is it possible to transfer this progress to the domain of graphs? We propose to sidestep hurdles associated with linearization of such discrete structures by having ...
متن کاملGrammar Variational Autoencoder
Deep generative models have been wildly successful at learning coherent latent representations for continuous data such as natural images, artwork, and audio. However, generative modeling of discrete data such as arithmetic expressions and molecular structures still poses significant challenges. Crucially, state-of-the-art methods often produce outputs that are not valid. We make the key observ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.04364 شماره
صفحات -
تاریخ انتشار 2018